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Asymptotic soliton train solutions of the defocusing nonlinear Schrdinger equation
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Asymptotic behavior of initially “large and smooth” pulses is investigated at two typical stages of their
evolution governed by the defocusing nonlinear Sdinger equation. At first, wave breaking phenomenon is
studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case
of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising
eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter
varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that
the distribution of eigenvalues depends on two functions—intengjyx) of the initial pulse and its initial
chirpvg(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of
the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.

DOI: 10.1103/PhysReVvE.66.036609 PACS nunerd2.65.Tg

[. INTRODUCTION oscillations occupy the whole pulse and they evolve eventu-
ally into a train of solitons. As was noticed in Ref46,17]

Nonlinear Schrdinger (NLS) equation is a universal for the KdV equation case, the parameters of these
equation that describes the evolution of envelopes of lineagsymptotic solitons can be calculated from a semiclassical
waves under the influence of weak dispersion and nonlinedfeatment of the quantum mechanical Sclinger operator
effects in a variety of physical systems. Depending on thé:lSSOCiated with the KdV equation in the framework of the
sign of the nonlinear term in this equation, the focusing andnverse scattering transform method with a potential deter-
defocusing cases with quite different properties are distinmined by the initial data. Then, for a large pulse leading to a
guished. In particular, the focusing NLS equation has brighgreat number of solitons at the final stage, the spectrum can
soliton solutions propagating on the zero backgroundbe found with the use of the semiclassicéBohr-
whereas defocusing NLS equation does not support brightommerfeld quantization rule that gives a full description of
solitons and instead has dark soliton solutions on the nonzefifie asymptotic stage of the evolution. The theory developed
plane wave oscillating backgrourd]. in Refs.[12] shows that a similar approach applies also to

We shall consider here the defocusing NLS equation wittthe defocusing NLS equation. Here we shall obtain the nec-
initial conditions in the form of a large and smooth pulse€ssary generalization of the Bohr-Sommerfeld quantization
described by the intensityy(x) and chirpvo(x). Itis known  rule by a simple methofil8,19 which applies also to many
that in the limit of negligible dispersion a general enoughother integrable wave equations. The results obtained permit
initial dark pulse governed by the defocusing NLS equatiorts to estimate the influence of initial chirp on the evolution
evolves at some critical time to the formation of the waveOf large pulses in optical fibef2,11,20,21 and other non-
breaking point and taking into account the small dispersiofinear materials, e.g. magnetic filig2,23.
leads to the onset of oscillations just after the wave breaking
point [2,3]. The region of oscillations arising here can be [l. PERIODIC AND DARK SOLITON SOLUTIONS
presented as a modulated periodic solution of the NLS equa- OF THE DEFOCUSING NLS EQUATION
tion. This permits one to apply to this problem the Whitham
theory of modulation$§4,5] which was used previously in the
solution of similar problems about the evolution of large
pulses describgd l_)y the KorteV\_/eg—de VrigslV) equation ieU,+ 82U, — 2|u[2u=0, 1)
[6-9]. Generalization of the Whitham theory on the defocus-
ing NLS equation case was developed in REf®—~13. Ina  whereu(x,t) is the envelope amplitude evolving with tinhe
general case the solution of the Whitham equations is C]Uitauring the propagation of the pu|se a|0ngaxis and small
complicated. However, in the vicinity of the wave breaking parametee <1 controls the relative magnitude of the disper-
point the pulse can be described by simplified approximatgjon effects. This equation is completely integrable, that is, it
formulas which admit an exact analytical solution of thecan be presented as a compatibility condition of two linear
Whitham equations in a closed form. For the case of the Kd\eystems[24] ¢, =U, 4=V, whereU andV are 2x2
equation such a solution was found in R¢fi4,15. Here we  matrices. However, for the investigation of a semiclassical

shall find a similar solution of Whitham equations for the |imit it is more convenient to use a scalar representation
NLS equation case that describes the so-called dissipationi9 25 in the form

less shock wave arising after the wave breaking point.
Further evolution of the pulse leads to the stage when e U= AW, Y=—3B+ By, 2

We shall consider the defocusing NLS equation in the
standard dimensionless form
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where 9:=Bg,— 53,9, (11
ig U2 Uy U2 which in a similar way yields
A=—(A+—8—X) +ul2- (ﬁ——g ,
2 2l == Sifix. (12
ieu . .
B=— 2\ 4+ —2% 3) where we have used the identity
um(X,t)=s1/2+iegu,/2u (13

which was first obtained in Ref26]. The transition to semi-
classical limit is achieved by means of the substitution

U(X,t)=\/p(X,t)eX%;—fXU(X',t)dX'), (4)

following from Eq. (7) after equating coefficients of2 on
both sides of this formula. Thug,(x,t) depends only on the
phaseé=x—s;t and obeys the equation

8——2\/—P(,u E=Xx—s;t. (14

The variableu(x,t) is complex and moves along a certain
N curve in the complex plane determined by the so-called “re
200t (pv)x=0, 3vi+vv,t et e%(pel8p®— prldp) = ality conditions” (see Ref[5]). These conditions distinguish
(5) physically meaningful solutions of E¢14) and lead to the
following expression for the intensity of the nonlinear peri-

so that NLS Eq(1) transforms into a system of equations for
intensity p(x,t) and chirpv(x,t):

Thus, in the semiclassical limi—0 the initial pulse at

=0 is determined by smooth distributions pf(x) and odic wave:
vo(X), whereasug(x) may be a fast oscillating function if P60 = UG [2= 1 (Aj=Np— Ag+ )\
vo(X)#0. We are interested in finding solutions at typical J=IUGDI= 3 = hamAatha)®
stages of pulse evolution. +(N1—N2)(A3—N\y)
As was noticed above, we suppose that arising after the
wave breaking point, the regions of oscillations can be pre- XS J(A1—N3) (A= Ng)€le,m],  (15)

sented as modulated periodic waves—soliton trains. Such
periodic solutions of Eqg(1) can be obtained as follows. It is
easy to check that the functions

where the zerog,,i=1,2,3,4, are ordered according to

A=Ap= A=y, (16)
i (x\/P
= \/§exp( i'_fx g()\) dx) (6) the parametem of the elliptic function is defined by
&
satisfy the first part of Eq(2) provided thatg(x,t) satisfies _ (A= N2)(A3—As) (17)
the equation (N1=N3)(Na—Ay)’
e300, 192~ Ag?=P()), (7 and
4
where the constant on the right-hand side can only depend on E=x—Vt, V=s,= 2 i (18)
“

the spectral parametex. The periodic solution is distin-
guished by the condition thd(\) be a polynomial in\,
and the one-phase periodic solution corresponds to the four
degree polynomial

X being the phase velocity of the nonlinear wave.
In a weakly modulated nonlinear periodic wave the pa-
rameters\;,i=1,2,3,4, become slow functions af and t
4 which change little in one wavelength and one period. The
POV=]] (\=XA)=A*—s\3+s,02—s;h+s,. (8)  evolution of \; is governed by the Whitham modulation
=1 equations(obtained for the NLS equation case in Refs.

: : . [27,28)
Theng(x,t) is the first degree polynomial

O\ O\ .
g(x,t)=u(x,t) =X, (9 E'f'vi()\)x:o, 1=1,2,3,4, (19

afzd b)y takingh = u in Eq. (7) we obtain the equation for \here the Whitham velocities are equal to
m(x,t

L :
I
From the second part of E€R) we find thatg(x,t) satisfies VIZ A (20

also the equation
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andL(\) is a wavelength which correspond to the dispersionless limit of the NLS
equation(1). It is convenient to introduce variables called
K(m) Riemann invariants,
= : (21)
V=) (o= 1) A, =L1u+\p, 26

K(m) being the complete elliptic integral of the first kind.
Substitution of Eq.(21) into Eq. (20) gives the Whitham

velocities in the form IN 9
7+(3)\++>\_)

so that Egs(25) take a convenient symmetric form

Moo A2
_o, o™ o
2(M1—A2) (A —AyK X at IX

= . 2
vi= 2 Nt (N1=N)K=(N2=Ny)E’ @
Initial data are given by two functions, (x,0) and\ _(x,0)
5= 2 2(N1—N2)(N2—Ny)K 22 determined by the initial distributionsy(x) andvq(x). The
= _

b (A= Ag)K—(A1—A3)E’ system(27) leads to two families of characteristics, i.e. lines

in the (x,t) plane along which one of the two Riemann in-

2(N 3= A3)(A3—AyK variants(either A . or \_) is constant. The wave breaking
U3= > A — — , point corresponds to the moment when characteristics of one
(A2=A3)K—=(N2—NyE i . .
of the families begin to intersect each other, so that the cor-
2(A1—N3)(A3—Ny)K responding Riemann invariant becomes a three-valued func-

tion of the space coordinate. Let such an intersection occur
for the characteristics with constant. . Then at the wave
breaking point the profile of, as a function ofx has a
vertical tangent line and, hence, in the vicinity of this point it
Qaries very fast, whereas the second Riemann invariant var-

mi_tﬁarameterts_?\i are dcallec;l_ F:'temsf'”t'”fYag'?;‘t$ Ofl t?e ies with x much slower and may be considered here as a
itham equations and our first task is to find their solution, 2 nt parameter,

corresponding to the region of oscillations arising after the
wave breaking point. At one edge of this region we have A_=\o=const. (28)
=1 orAg=A\,, so that the intensity distribution is given by

Thus, the second part of E(R7) is solved by Eq(28) and

U4:E )\I_(

N1=N)K=(A1—=N3)E’

where K=K(m) and E=E(m) are complete elliptic inte-
grals of the first and second kind, respectively. In this cas

p(Xt)= 1()\ a2 (M= N2)(N2—Ny) the first part of Eq(27) has a well-known solution
S A SR V(N = hp) (ha—Ng) Ele ]’
[VOM=N2)(Aa—Ny) € 8(]23) X— (3N FAt=F(\4).
where £é=x— (\;+2\,+\,)t, and at the other side with Since at the wave breaking time momertO the function
gent line, in the vicinity of this poinf(\ ) can be approxi-
p(X,1)=%(Ag—A4)2 (24)  mated by a cubic function,
Thus, in the problem of the evolution of dissipationless X— (3N +Ag)t=—C(A.—A,)3 (29

shock wave we have to find boundaries of the region of
oscillations and the dependence of the parametersn x Equations(28) and(29) (att=0) may be considered as ini-

andt within it. tial data for the Riemann invariants in the vicinity of the
At the asymptotically large values of time the pulsewave breaking point.
evolves into a train of dark soliton solutions with=1 [Eq. The “shallow water equations(25) are invariant with

(23)]. The values of\, and\, are determined by the back- respect to the Galileo transformation,
ground wave and hence are constant, so that the parameters

of solitons in the train are determined by the values\ of X'=x—2vot, t'=t, p=p’, v=v'+vo,
Our second task is to find how, varies along the soliton -
train arising from the initial pulse with given distributions of Ne=M\i+300,

po(X) andu(X). . .
and scaling transformation

lll. DISSIPATIONLESS SHOCK WAVE x=ax' t=t', p=a%p’, v—av’, A.—arl,

For smooth pulses, when we can neglect higher space _
derivatives in Eqs(5), we arrive at equations of hydrody- Which allow us to transform Eq$28) and(29) to a simple
namical type, form

Lot (pv)=0, v, +vv,+p,=0, (25) X—(3)\++)\)t=—7\i, N_=\=const, (30
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t<0 t=0 t>0 wherev;(\) are the Whitham velocitie0) andw;(\) are

velocities of a flow

A A Ay
X
\ Moo N0 i—1234 36
Ewi()g_al_vayy ()
commuting with Eqs(19). If we representv;(\) in the form
A analogous to Eqg20),
FIG. 1. The dependence of Riemann invariantson x at dif- L
ferent moments of time. w;(\)= ( 1— _Lai)w i=1234 (37)
&l L 1 1 1 1

where we use the previous notati@mithout prime$ for the
Riemann invariants and space and time coordinates. Thus, | . -
the dispersionless limit the solution of E427) has the form {ﬂgn the cor;]dltlonl of co_mmutatlvny. of flowel9) and (36)
(30) in the vicinity of the wave breaking poirisee Fig. 1 reduces to the Euler-Poisson equatiph]

The formation of a multivalued region of , (x) shows
that we cannot neglect dispersion in the vicinity of this point.
The dispersion effects lead to the formation of the region of d;9;W
oscillations where the solution of the NLS equatidn can
be approximated by a modulated periodic wave. In our ap-

proximation we suppose that, is constant within the region ¢ js easy to check that this equation has a particular solution

of oscillations anch 1, X, andA; vary so that at one of its \y/— constA’P(\), P(\)=TI(A—\,), which is sufficient for
boundaries we have,=\5 (m=1) and at the other bound- o,; 5im_ e choose the normalization factor so that the co-
ary A;=\; (m=0). Correspondingly, the Whitham veloci- eficient beforex ~* in the series expansion &% in powers
ties (22) are equal at these limits to of A~! be equal tos; and, hence, the corresponding co-
incide with the Whitham velocitie§20). Thus, we obtain a
v1=3\;+Ns, Va=va= N\;, vs=A,;+3\, (31)  sequence otW=W® defined by the generating function

ath,=hs(m=1), and to S S wl s §s1-35;
pimeeS g AN IRCE i U S
2 1—N3—\g (39
V4=N3t 3N (32) £s—3s.5,+ 15,
at A ,=\;(m=0). Hence, two of the four Whitham equa- ' A e

tions (19) reduce to Eqs(27) at the boundaries of the region

Sgr?;ﬁlt!aﬁg\r/lg’ tgncol,it:égeefo\,rv?tﬁheaﬁ,rgsg%ﬂan?f?ann "Mvhere P(\) coincides with the polynomial in Eq8). Thus,
= ' a sequence of velocities of the commuting flows is given by

A=A, at m=1, Az=A, at m=0,

_ W =W+ (p;—s7) WM, (40)
and \,=\_ inboth cases. (33
Thus we have to find such a solution of Eq&9) which  Then a simple calculation shows that the soluti85) satis-
gives fying the boundary condition&4) has the form
Xx— (BN +A)t=—73 at m=1, (34)

x—vi(M)t=—ZWEON) + ZAW@+ ZNZ0, (M) + 2N,
Xx—(38\z+A)t=—73 at m=0.

In the generalized hodograph meth@9] the solution is i=1,2,3; (41
looked for in the form

X—vi(Mt=w;(\), 1=1,2,3,4, (35) \4=\ = const.
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These formulas give the solution of our problem in an im-
plicit form.

Let us find the laws of motion of the boundaries of the
oscillatory region. Atm=1 Egs.(41) with i=1 andi=3
give

X—(3\;+M)t=—23,

X—(N1+2N3+ N)t=— & (N3 +B6N2N5+ 8N A2+ 1613),
and their difference gives the relation

t=Z(15\3+ 12\ A3+ 8)\3). (42

The other two equations of E¢41) expanded into series in
powers ofA;=\,—\3 yield after subtraction another rela-
tion

t=2(3NT+ 8N A3+ 24\3). (43

Equating(42) and(43) to each other, we find at this bound-
ary the relation
A3

:_%)\1, (44)

PHSICAL REVIEW E 66, 036609 (2002

FIG. 2. The dependence of Riemann invarianisk,,\3 on X

at fixed value of timet=1. The fourth Riemann invariak,=\

—10 is not depicted. The dashed line shows the corresponding
dependence of , for the solution of equations in the dispersionless
limit.

are determined by the spectrum of values It is known

that this spectrum coincides with the eigenvalues of the first
part of Eq.(2) for given pg(x) andvy(x) and it does not
change during the evolution of(x,t) governed by the NLS
equation. In the case of large and smooth pulses with large
number of eigenvalues, the spectrum can be determined, in
principle, by means of a semiclassical treatment of the eigen-

which coincides with an analogous relation in the KdV equa-value problem. The corresponding generalization of semi-

tion casg5,14]. Then from Eqs(42) or (43) we obtain at the
left boundaryt=%)\f and hence the left boundary of the
region of oscillations moves according to the law

= — 10
X () =(3Ng+Mt—AJ=\t—3 \/;3/2_

Analogous calculation ah=0 (A,=\,) yields the relations

(49)

o (81— 7N)(BN2+ 4N N3 +302)— 1513
35(4N;—N3—3\)

(46)

2IN2(4N1+N3)— 1ON(20M2+ 2N A3+ A2) + 160 (82

—MAz—Ad)+9n3=0. (47)

In the limit |y|*>00, these equation reproduce the relations

for the KdV equation casgs,14), in particular,\ ;= — 7\ 5.
However, in the NLS equation case the solutidd) is not
self-similar and depends on the parameteAn example of
the dependence of the Riemann invarianisk,,A; on x at

a fixed value oft is shown in Fig. 2. Substitution of these
functionsX;(x) into Eq.(15) gives the dependence of inten-
sity onx shown in Fig. 3. This plot illustrates the process of
the formation of a shock for the NLS equation case.

IV. ASYMPTOTIC STAGE OF EVOLUTION

In the asymptotic stage of the evolution the pulse decays
into a set of solitons which can be presented as modulated

classical quantization rules can be found with the use of a
matrix (Zakharov-Shabatspectral problem associated with
the NLS equatiorisee, e.g., Ref$12,30—32). Here we shall
show that it follows very simply from the scalar for(g),

and this method of derivation can be generalized on many
other integrable equatiorisee Refs[19,25)).

For strictly periodic case, the solution of the second-order
Eq. (2) is given by Eq.(6) with constantP(\). For a slowly
modulated wave the zeras become slow functions ofand
t, and for this reason we insert&{\) under the integration
sign in Eq.(6). With the use of Eq47), (9), and(13), we can
present/~ in the form

-
¢/+~exp< t;—f a{[()\nLisu>(/2u)2—|u|2

+82(Uy,/2u— u>2</2u2)]gz+ £2(g0y,/2— g>2(/4)}1lzdx ,
(48)
55t P

30

0

-12 LTLE -6 -4 X

one-phase periodic soliton trains. Each separate soliton is

described by Eq(23) and parameters; and\, are constant
along the train, whereas the parametgrchanges its value

FIG. 3. Dissipationless shock wave for the NLS equation case.
The plot corresponds to the time=1 and\,=A=—10, ande

from one soliton to another. Thus, the properties of the train=1.
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where which is satisfied by
g=si/2+ieu,/2u—N\. (49 Ap=3(A1+Ng) OF A;+A,=0.

We suppose that this expression holds approximately for aliere the first solution is nonphysical because for symmetri-
moments of time including the initial state. Then, since thecal pulses we always have,= —\; but |\ |mi, must vary
initial  distributions  of po(x)=|u(x,0)> and vo(X)=  depending on the initial data. Thus, we conclude that in the

—ieuy/u are supposed to be smooth functionsxpfve can  asymptotic trains of solitons the constant parameters satisfy
neglect the derivatives afy(x) in the weak dispersion limit  the relation

£2<1 to obtain the WKB wave function of the initial state,

, Ng=— Ny, (55
+I_ X\/ _1 2_ d
Ywie™ex e [A=200(x)]"=po(x) dx]. (50 and hence the possible valuesof are located inside the
intervals
The eigenvaluea are determined in this approximation by
the well-known Bohr-Sommerfeld quantization ri&s] “AmaS A< Niny Amin<X2<Xmax; (56)

where\ .= Vp(°) and\’,\" (A" <\") correspond to the
minima of the potential§\*(x)|. Solitons in the arising
trains have the intensity given by

1
- % p(x)dx=2m(n+3%), n=0,1,2... N,

()= VI — Lvo(X) 12— po(x), (51) ,
)\l_)\Z

—_\2_
where the integration is taken over the cycle around two ps(X,1)=A1 cosH[ \/)\2_)\2()(_2)\20/8]' (57
turning points where the integrand function vanishes. Eigen- v

values found in this way are equal to the values of the pagjnce the velocity of solitonés7) is equal to the values of

rameteri, in soliton solutlo_n(23) when sol_ltons_are We_II 2\, and at this asymptotic stage of the evolution we can

separated from each other in the asymptotic soliton train. peglect the “initial positions” of solitons, then the coordinate
It is instructive to note that the rulésl) corresponds t0  ,f the nth soliton at the momeritis given by

the semiclassical quantization of a mechanical system with

the Hamiltonian x=2\t, (58)

H(p.x) =[P+ po(x) = 300(X) % (520 where A is the nth eigenvalue determined by E¢5Y).

wherex is a coordinate ang a momentum. At the turning Hence, at the momemthe soliton trains occupy the intervals

points the momentunp vanishes. Equatio5l) states that
the area inside the contobi(p,x) =const in the phase plane
(x,p) can only take half-integer values in units ofr2.

The regions of the possible values)ofire determined by Differentiation of Eq.(51) with respect to\ yields the
the condition that the expression under the square root in Eqy,mper of eigenvalues in the interval,( +d\)
(51) is positive and has two real turning points. Thus the ' '

=2 mad <X<2\[t  and mint <X<2Nmaxt-
(59

plots of the “potentials” (Riemann invariants in the zero 1 A= 0g(X)/2
dispersion limi dn:f()\)d)\:< 0 2 dx | dx.
) 2me J [N —vo(x)/2]*= po(X)
A+ (X)=300(X) = Vpo(X) (53 (60)

permit one to find a qualitative picture of the spectrum. InThis formula has a simple interpretation in terms of semi-
particular, if the chirp vanishes at infinity,(x)—0 at |x| classical quantization rules for the Hamiltoniafb2).
—oo, the greatest absolute value af is approximately Namely, the “velocity of motion” between two turning
equal to points is given by

INalmax= Vp(©) =3 (A 1= \y). (54) -~ oH 20— 0o(0)/2)2= po(x)
= p N—0g(X)/2 ’

On the other hand, the smallest absolute valuep\ gff for
large initial pulse must be very close to the absolute loca
minima of the potential$\ .- (x)| and at the same time coin-
cide with the amplitudes of the deepest solit@h?g [see Eq.
(23)] in the trains produced by this pulse. This gives the
relation

!md the calculation of the period of this oscillatory motion

T=¢dx/x and of the corresponding frequeney=2m/T
shows that Eq(60) can be written in the form

-1

d)\z_ B dx
TM=N)?= (A=) (Na— Ny =\5, m—sa)()\)—ZWS é; ’ (61
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o ) ) FIG. 5. ContoursH(p,x)=constE\? in the phase planex(p)
FIG. 4. Plots of initial potentlalst [see Eq(53)] as functions ¢ the mechanical system described by Hamiltor{B@) with po(X)
of x for po(x) anduvo(x) given by Eqs(63) and(64), (@) and(b), g 4,(x) given by Egs.(63) and (64a,5 and for values ofx

respectively. The turning points™ corresponding to the eigenvalue determined by the quantization rulgl) with evenn.
N=1.2 are shown. The possible valuesiofire given by Eq(65).

or
which means that the distance between neighboring eigen-
values of\? is equal to the “quantum’z proportional to

the frequencyw of the classical motion. The rul§l) coin-  The parametes controlling the dispersion effects is chosen
cides with the quantum mechanical rule of semlclassmagquw toe=0.2. In Fig. 4 the plots of potentials3) are
quantization with the Planck constaitreplaced by [33].  ghown for zeroa) and nonzerdb) initial velocities v(x).
The number of solitons in the intervak,k+dx) is given  The possible values of are located inside the intervals6)
by and they must satisfy the quantization r¢tel) that selects
contours H(p,x)=const=A? in the phase planex(p).
dn=(1/2t)f(x/2t)dx, (62 These contours corresponding to the even values ahd
] ) ) A>0 are depicted in Fig. 5 for zer and nonzerao(b)
where f(A) is determined by Eq(60). The amplitudes of iyjtia| chirp. The dependence ofon A>0 is shown in Fig.

: 2 e .
these dark solitons are equal x§—(\5")%, and positive g where the lower curve corresponds to zero chirp and the
eigenvalues\{">0 correspond to solitons moving to the

vo(X)= — 4sinhx/cosHx. (64b)

right and negative eigenvalua$” <0 to solitons moving to 16
the left. Thus, the formulas obtained give the complete de- 14 -
scriptions of the soliton trains arising from an initially large 12|
and smooth pulse. "
Let us illustrate this theory by concrete examples and
compare the theoretical predictions with the results of the e 8r
direct numerical solution of the defocusing NLS equation 6l
(2).
At first we choose the initial distribution of intensity 41
po(X) in the form 2r
0 1 I i 1
2 0 0.5 1 1.5 2
Po(X)—(Z Coshx) (63) A
FIG. 6. The dependence ofon A>0 defined by Eq(51) for
and the initial distribution o 5(x) as po(X) andvg(x) given by Egs.(63) and (64). The lower curve
corresponds to zero chirf@ and the upper curve to nonzero chirp
either vy(x)=0 (649  (b).
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4.5 " " " " " TABLE |. Eigenvalues for the initial condition&3) and (64).
4
—\W” W[/— n v=0 _ 4sinhx
350 | costx
Z 3t 1
§ 25 )\BS )\simulation )\BS Asimulation
= . r 1
. | 0 1.094 1.078 0.390 0.402
1 1.254 1.243 0.653 0.669
L5 2 1.387 1.379 0.878 0.885
1 . . . . . 3 1.499 1.494 1.072 1.096
-100 -50 0 50 100 4 1.594 1.592 1.242 1.270
(a) 5 1.674 1.676 1.391 1.425
45 - 6 1.743 1.749 1.521 1.562
7 1.802 1.812 1.634 1.684
4
3s | - ’ - ] 8 1.852 1.866 1.732 1.793
5 | 9 1.892 1.913 1.814 1.890
2 sl | 10 1.926 1.954 1.882 1.978
5 1 | 11 1.953 1.989 1.936 2.054
=}
15t 1
1 E 4
05 | these velocities as values nf calculated numerically. We
0 , , , , , , , give in Table | the values ok,=M\gg calculated from the
200 -150 -100 -50 0 50 100 150 200 Bohr-Sommerfeld quantization rule51) and of X\,
(b) X =\gimulation Calculated from velocities of the soliton trains.

The agreement between the two methods of calculation is
quite good. The difference does not exceed 3% and is maxi-

zero (a) and nonzerdb) initial chirp. Asymptotic distributions of mal at very smalh, where the accuracy of the semiclassical

intensity are shown as functions of space coordinate the mo- calculation ‘?f the eigenvalues cannot, general_ly spea_klng, be
mentt = 25. extremely high, and at large where the numerical estimate

has poor accuracy because solitons here are not separated

hi he ch hi well enough from each other and their motion does not obey
upper curve to nonzero chirp. As we see, the chosen chirg,q formula(58) yet. The accuracy of asymptotic formulas

FIG. 7. Soliton trains obtained by numerical solution of the NLS
equation(1) with £=0.2 and initial conditiong63) and (64) with

diminishes the values of the eigenvaluef s so that soli- jncreases with the decrease of The number of solitons
tons arising in this case move slower than in the case of zefgyrmed from a pulse with a given intensity is proportional
chirp. to ¢.

We have solved the NLS equati¢b) with the initial con-
ditions (63) and (64) numerically and the results are shown
in Fig. 7 again for zerga) and nonzerab) chirp. As one can e
see, the results are in excellent agreement with the predicted ) —VV" ‘ ’ I MWW—

4,5

intervals. To make a comparison of the theory with numeri-
cal results clearer, we have calculated velocities of solitons
in the trains and, according to EG8), have taken halves of

3,0
2,5

2,04

Intensity

154

1,0
/)w’- 05+
\/ 0,0

-4 2 2 4 FIG. 9. Soliton trains obtained by numerical solution of the NLS

equation(1) with £=0.2 and initial condition§63) and (65). The

-1 A asymptotic distribution of intensity is shown as a function of space

- coordinatex at the moment=20. The train of usual solitons moves

to the left and corresponds to negative eigenvalues in the potential

N _(x) and the train of twin solitons moves to the right and corre-
FIG. 8. The potentiala .. (x) [see Eq.(53)] for the initial con-  sponds to positive slightly split eigenvalues in two-well potential

ditions (63) and(65). Ni(X).

)
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TABLE II. Negative eigenvalues for the initial conditiori€3) TABLE lIl. Positive eigenvalues for the initial condition(§3)

and (65). and (65); Nsimulation @re calculated as arithmetic mean values for
each couple of twin solitons.

n )\BS )\simulation

0 —0.2278 —0.2280 n NBs Asimulation

1 —0.6073 —0.6052 0 1.329 1.311

2 —-0.9175 —0.9155 1 1.498 1.489

3 —1.1775 —1.1774 2 1.637 1.635

4 —1.39684 —1.3998 3 1.749 1.757

5 —1.58083 —1.5875 4 1.838 1.857

6 —1.73217 —1.7432 5 1.907 1.941

7 —1.85163 —1.8695

8 —1.93821 —1.9647

9 —1.98889 solitons moving to the right correspond to slightly split ei-

genvalues of the spectral problem with two-well potential

N T(x) and the mean velocity of each couple agrees well
As a second example we shall consider the initial pulseenough with the semiclassical ruigl); see Table IlI.

with intensity (63) and more complicated chirp

) V. CONCLUSION

B 3—cosh2x)
coshx

d [ 2sinhx
vo(X)= d_x( (65) The semiclassical approach developed in this paper per-

mitted us to consider in some detail the evolution of pulses

when the potentialé53) have the form shown in Fig. 8. The governed by the defocusing NLS equation. Two characteris-
potential\ _(x) has usual one-well form with nondegeneratetiC stages of evolution have been considered—the formation
negative eigenvalues which can be calculated according t8f the dissipationless shock after the wave breaking point
the semiclassical rulé1). However, the semiclassical eigen- and asymptotic soliton trains formed eventually from a large
values of the two-well potential . (x) are double degenerate initial pulse. It has been shown that the semiclassical ap-
and by analogy with quantum mechanics they must be spliroach to the calculation of the eigenvalues of the problem
into two very close levels with splitting proportional to the (2) Yields a simple and effective description of the

costx

barrier penetration coefficiefig3)], asymptotic stage of the evolution of an initially large and
smooth pulse in the weak dispersion limit. The results show

") 1(x that the arising solitons can be slowed down by the initial

ANyTexp — gﬁx p(x)|dx|, (66)  chirp, but it cannot prevent the formation of solitons from a
' large pulse due to dispersion effects. As typical examples, the

so that the eigenvalues are given by usual soliton trains and twin soliton trains are considered.
Their characteristic features are controlled by the initial con-

A==\ LAND (67)  ditions, what may occur useful for applications. The theoret-

ical predictions are confirmed by numerical simulations.
where\{" correspond to the rulés1) and the integral in Eq.
(66) is calculated ah =\ . These close to each other ei-
genvalues must lead to the formation of “twin” solitons with
very close values of their parameters. The intensity of the A.M.K. and B.A.U. are grateful to the staff of Instituto de
pulse obtained by the numerical solution of the NLS equaFisica Teoica, UNESP(where this work was start@dor
tion (1) with initial data (63) and (65) is shown in Fig. 9. kind hospitality. The authors were partially supported by
Solitons moving to the left correspond to the nondegeneratEAPESP(Brazil). A.M.K. thanks also RFBRGrant No. 01-
eigenvalues and their velocities§) agree quite well with  01-00696, R.A.K. thanks CNPdBrazil), and B.A.U. thanks
ones calculated according to E(p1); see Table Il. Twin CRDF (Grant No. ZM2-2095for partial support.
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