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Asymptotic soliton train solutions of the defocusing nonlinear Schro¨dinger equation
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Asymptotic behavior of initially ‘‘large and smooth’’ pulses is investigated at two typical stages of their
evolution governed by the defocusing nonlinear Schro¨dinger equation. At first, wave breaking phenomenon is
studied in the limit of small dispersion. A solution of the Whitham modulational equations is found for the case
of dissipationless shock wave arising after the wave breaking point. Then, asymptotic soliton trains arising
eventually from a large and smooth initial pulse are studied by means of a semiclassical method. The parameter
varying along the soliton train is calculated from the generalized Bohr-Sommerfeld quantization rule, so that
the distribution of eigenvalues depends on two functions—intensityr0(x) of the initial pulse and its initial
chirp v0(x). The influence of the initial chirp on the asymptotic state is investigated. Excellent agreement of
the numerical solution of the defocusing NLS equation with predictions of the asymptotic theory is found.
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I. INTRODUCTION

Nonlinear Schro¨dinger ~NLS! equation is a universa
equation that describes the evolution of envelopes of lin
waves under the influence of weak dispersion and nonlin
effects in a variety of physical systems. Depending on
sign of the nonlinear term in this equation, the focusing a
defocusing cases with quite different properties are dis
guished. In particular, the focusing NLS equation has bri
soliton solutions propagating on the zero backgrou
whereas defocusing NLS equation does not support br
solitons and instead has dark soliton solutions on the non
plane wave oscillating background@1#.

We shall consider here the defocusing NLS equation w
initial conditions in the form of a large and smooth pul
described by the intensityr0(x) and chirpv0(x). It is known
that in the limit of negligible dispersion a general enou
initial dark pulse governed by the defocusing NLS equat
evolves at some critical time to the formation of the wa
breaking point and taking into account the small dispers
leads to the onset of oscillations just after the wave break
point @2,3#. The region of oscillations arising here can
presented as a modulated periodic solution of the NLS eq
tion. This permits one to apply to this problem the Whitha
theory of modulations@4,5# which was used previously in th
solution of similar problems about the evolution of lar
pulses described by the Korteweg–de Vries~KdV! equation
@6–9#. Generalization of the Whitham theory on the defocu
ing NLS equation case was developed in Refs.@10–13#. In a
general case the solution of the Whitham equations is q
complicated. However, in the vicinity of the wave breaki
point the pulse can be described by simplified approxim
formulas which admit an exact analytical solution of t
Whitham equations in a closed form. For the case of the K
equation such a solution was found in Refs.@14,15#. Here we
shall find a similar solution of Whitham equations for th
NLS equation case that describes the so-called dissipa
less shock wave arising after the wave breaking point.

Further evolution of the pulse leads to the stage wh
1063-651X/2002/66~3!/036609~10!/$20.00 66 0366
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oscillations occupy the whole pulse and they evolve even
ally into a train of solitons. As was noticed in Refs.@16,17#
for the KdV equation case, the parameters of the
asymptotic solitons can be calculated from a semiclass
treatment of the quantum mechanical Schro¨dinger operator
associated with the KdV equation in the framework of t
inverse scattering transform method with a potential de
mined by the initial data. Then, for a large pulse leading t
great number of solitons at the final stage, the spectrum
be found with the use of the semiclassical~Bohr-
Sommerfeld! quantization rule that gives a full description o
the asymptotic stage of the evolution. The theory develo
in Refs. @12# shows that a similar approach applies also
the defocusing NLS equation. Here we shall obtain the n
essary generalization of the Bohr-Sommerfeld quantiza
rule by a simple method@18,19# which applies also to many
other integrable wave equations. The results obtained pe
us to estimate the influence of initial chirp on the evoluti
of large pulses in optical fibers@2,11,20,21# and other non-
linear materials, e.g. magnetic films@22,23#.

II. PERIODIC AND DARK SOLITON SOLUTIONS
OF THE DEFOCUSING NLS EQUATION

We shall consider the defocusing NLS equation in t
standard dimensionless form

i«ut1«2uxx22uuu2u50, ~1!

whereu(x,t) is the envelope amplitude evolving with timet
during the propagation of the pulse alongx axis and small
parameter«!1 controls the relative magnitude of the dispe
sion effects. This equation is completely integrable, that is
can be presented as a compatibility condition of two line
systems@24# cx5Uc, c t5Vc, whereU and V are 232
matrices. However, for the investigation of a semiclassi
limit it is more convenient to use a scalar representat
@19,25# in the form

«2cxx5Ac, c t52 1
2 Bxc1Bcx , ~2!
©2002 The American Physical Society09-1
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where

A52S l1
i«

2

ux

u D 2

1uuu22
«2

2 S uxx

u
2

ux
2

u2D ,

B522l1
i«ux

u
, ~3!

which was first obtained in Ref.@26#. The transition to semi-
classical limit is achieved by means of the substitution

u~x,t !5Ar~x,t !expS i

«E
x

v~x8,t !dx8D , ~4!

so that NLS Eq.~1! transforms into a system of equations f
intensityr(x,t) and chirpv(x,t):

1
2 r t1~rv !x50, 1

2 v t1vvx1rx1«2~rx
2/8r22rxx/4r!x50.

~5!

Thus, in the semiclassical limit«→0 the initial pulse att
50 is determined by smooth distributions ofr0(x) and
v0(x), whereasu0(x) may be a fast oscillating function i
v0(x)Þ0. We are interested in finding solutions at typic
stages of pulse evolution.

As was noticed above, we suppose that arising after
wave breaking point, the regions of oscillations can be p
sented as modulated periodic waves—soliton trains. S
periodic solutions of Eq.~1! can be obtained as follows. It i
easy to check that the functions

c65AgexpS 6
i

«E
xAP~l!

g
dxD ~6!

satisfy the first part of Eq.~2! provided thatg(x,t) satisfies
the equation

«2~ 1
2 ggxx2

1
4 gx

2!2Ag25P~l!, ~7!

where the constant on the right-hand side can only depen
the spectral parameterl. The periodic solution is distin-
guished by the condition thatP(l) be a polynomial inl,
and the one-phase periodic solution corresponds to the fo
degree polynomial

P~l!5)
i 51

4

~l2l i !5l42s1l31s2l22s3l1s4 . ~8!

Theng(x,t) is the first degree polynomial

g~x,t !5m~x,t !2l, ~9!

and by takingl5m in Eq. ~7! we obtain the equation fo
m(x,t),

«mx52A2P~m!. ~10!

From the second part of Eq.~2! we find thatg(x,t) satisfies
also the equation
03660
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which in a similar way yields

m t52s1mx , ~12!

where we have used the identity

m~x,t !5s1/21 i«ux/2u ~13!

following from Eq. ~7! after equating coefficients ofl3 on
both sides of this formula. Thus,m(x,t) depends only on the
phasej5x2s1t and obeys the equation

«
dm

dj
52A2P~m!, j5x2s1t. ~14!

The variablem(x,t) is complex and moves along a certa
curve in the complex plane determined by the so-called ‘‘
ality conditions’’ ~see Ref.@5#!. These conditions distinguish
physically meaningful solutions of Eq.~14! and lead to the
following expression for the intensity of the nonlinear pe
odic wave:

r~x,t !5uu~x,t !u25 1
4 ~l12l22l31l4!2

1~l12l2!~l32l4!

3sn2@A~l12l3!~l22l4!j/«,m#, ~15!

where the zerosl i ,i 51,2,3,4, are ordered according to

l1>l2>l3>l4 , ~16!

the parameterm of the elliptic function is defined by

m5
~l12l2!~l32l4!

~l12l3!~l22l4!
, ~17!

and

j5x2Vt, V5s15(
i 51

4

l i , ~18!

V being the phase velocity of the nonlinear wave.
In a weakly modulated nonlinear periodic wave the p

rametersl i ,i 51,2,3,4, become slow functions ofx and t
which change little in one wavelength and one period. T
evolution of l i is governed by the Whitham modulatio
equations~obtained for the NLS equation case in Re
@27,28#!

]l i

]t
1v i~l!

]l i

]x
50, i 51,2,3,4, ~19!

where the Whitham velocities are equal to

v i~l!5S 12
L

] iL
] i DV, ] i[]/]l i , i 51,2,3,4,

V5( l i , ~20!
9-2
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andL(l) is a wavelength

L5
K~m!

A~l12l4!~l22l3!
, ~21!

K(m) being the complete elliptic integral of the first kind
Substitution of Eq.~21! into Eq. ~20! gives the Whitham
velocities in the form

v15( l i1
2~l12l2!~l12l4!K

~l12l4!K2~l22l4!E
,

v25( l i2
2~l12l2!~l22l4!K

~l22l3!K2~l12l3!E
, ~22!

v35( l i1
2~l22l3!~l32l4!K

~l22l3!K2~l22l4!E
,

v45( l i2
2~l12l3!~l32l4!K

~l12l4!K2~l12l3!E
,

where K5K(m) and E5E(m) are complete elliptic inte-
grals of the first and second kind, respectively. In this c
the parametersl i are called Riemann invariants of th
Whitham equations and our first task is to find their solut
corresponding to the region of oscillations arising after
wave breaking point. At one edge of this region we havem
51 or l35l2, so that the intensity distribution is given b

rs~x,t !5
1

4
~l12l4!22

~l12l2!~l22l4!

cosh2@A~l12l2!~l22l4! j/«#
,

~23!

where j5x2(l112l21l4)t, and at the other side with
m50 wherel25l1 we obtain a smooth solution

r~x,t !5 1
4 ~l32l4!2. ~24!

Thus, in the problem of the evolution of dissipationle
shock wave we have to find boundaries of the region
oscillations and the dependence of the parametersl i on x
and t within it.

At the asymptotically large values of time the pul
evolves into a train of dark soliton solutions withm51 @Eq.
~23!#. The values ofl1 andl4 are determined by the back
ground wave and hence are constant, so that the param
of solitons in the train are determined by the values ofl2.
Our second task is to find howl2 varies along the soliton
train arising from the initial pulse with given distributions o
r0(x) andv0(x).

III. DISSIPATIONLESS SHOCK WAVE

For smooth pulses, when we can neglect higher sp
derivatives in Eqs.~5!, we arrive at equations of hydrody
namical type,

1
2 r t1~rv !x50, 1

2 v t1vvx1rx50, ~25!
03660
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which correspond to the dispersionless limit of the NL
equation~1!. It is convenient to introduce variables calle
Riemann invariants,

l65 1
2 v6Ar, ~26!

so that Eqs.~25! take a convenient symmetric form

]l1

]t
1~3l11l2!

]l1

]x
50,

]l2

]t
1~l113l2!

]l2

]x
50.

~27!

Initial data are given by two functionsl1(x,0) andl2(x,0)
determined by the initial distributionsr0(x) andv0(x). The
system~27! leads to two families of characteristics, i.e. line
in the (x,t) plane along which one of the two Riemann i
variants~either l1 or l2) is constant. The wave breakin
point corresponds to the moment when characteristics of
of the families begin to intersect each other, so that the c
responding Riemann invariant becomes a three-valued fu
tion of the space coordinate. Let such an intersection oc
for the characteristics with constantl1 . Then at the wave
breaking point the profile ofl1 as a function ofx has a
vertical tangent line and, hence, in the vicinity of this point
varies very fast, whereas the second Riemann invariant
ies with x much slower and may be considered here a
constant parameter,

l25l05const. ~28!

Thus, the second part of Eq.~27! is solved by Eq.~28! and
the first part of Eq.~27! has a well-known solution

x2~3l11l0!t5 f ~l1!.

Since at the wave breaking time momentt50 the function
x5 f (l1) must have an inflection point with a vertical tan
gent line, in the vicinity of this pointf (l1) can be approxi-
mated by a cubic function,

x2~3l11l0!t52C~l12l̄1!3. ~29!

Equations~28! and ~29! ~at t50) may be considered as in
tial data for the Riemann invariants in the vicinity of th
wave breaking point.

The ‘‘shallow water equations’’~25! are invariant with
respect to the Galileo transformation,

x85x22v0t, t85t, r5r8, v5v81v0 ,

l65l68 1 1
2 v0 ,

and scaling transformation

x5ax8, t5t8, r5a2r8, v5av8, l65al68 ,

which allow us to transform Eqs.~28! and ~29! to a simple
form

x2~3l11l̄ !t52l1
3 , l25l̄5const, ~30!
9-3
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where we use the previous notation~without primes! for the
Riemann invariants and space and time coordinates. Thu
the dispersionless limit the solution of Eqs.~27! has the form
~30! in the vicinity of the wave breaking point~see Fig. 1!.

The formation of a multivalued region ofl1(x) shows
that we cannot neglect dispersion in the vicinity of this poi
The dispersion effects lead to the formation of the region
oscillations where the solution of the NLS equation~1! can
be approximated by a modulated periodic wave. In our
proximation we suppose thatl4 is constant within the region
of oscillations andl1 , l2, andl3 vary so that at one of its
boundaries we havel25l3 (m51) and at the other bound
ary l25l1 (m50). Correspondingly, the Whitham veloc
ties ~22! are equal at these limits to

v153l11l4 , v25v35( l i , v45l113l4 ~31!

at l25l3(m51), and to

v15v25( l i1
4~l12l3!~l12l4!

2l12l32l4
, v353l31l4 ,

v45l313l4 ~32!

at l25l1(m50). Hence, two of the four Whitham equa
tions ~19! reduce to Eqs.~27! at the boundaries of the regio
of oscillations, and therefore the corresponding Riemann
variants have to coincide withl6 at these boundaries,

l15l1 at m51, l35l1 at m50,

and l45l2 in both cases. ~33!

Thus we have to find such a solution of Eqs.~19! which
gives

x2~3l11l4!t52l1
3 at m51, ~34!

x2~3l31l4!t52l3
3 at m50.

In the generalized hodograph method@29# the solution is
looked for in the form

x2v i~l!t5wi~l!, i 51,2,3,4, ~35!

FIG. 1. The dependence of Riemann invariantsl6 on x at dif-
ferent moments of time.
03660
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wherev i(l) are the Whitham velocities~20! andwi(l) are
velocities of a flow

]l i

]t
1wi~l!

]l i

]x
50, i 51,2,3,4, ~36!

commuting with Eqs.~19!. If we representwi(l) in the form
analogous to Eqs.~20!,

wi~l!5S 12
L

] iL
] i DW, i 51,2,3,4, ~37!

then the condition of commutativity of flows~19! and ~36!
reduces to the Euler-Poisson equations@10#

] i] jW2
1

2~l i2l j !
~] iW2] jW!50, iÞ j . ~38!

It is easy to check that this equation has a particular solu
W5const/AP(l), P(l)5)(l2l i), which is sufficient for
our aim. We choose the normalization factor so that the
efficient beforel21 in the series expansion ofW in powers
of l21 be equal tos1 and, hence, the correspondingwi co-
incide with the Whitham velocities~20!. Thus, we obtain a
sequence ofW5W(k) defined by the generating function

W5
2l2

AP~l!
5(

W(k)

lk
521

s1

l
1

3
8 s1

22 1
2 s2

l2

~39!

1

5
16 s1

32 3
4 s1s21 1

2 s3

l3
1•••,

whereP(l) coincides with the polynomial in Eq.~8!. Thus,
a sequence of velocities of the commuting flows is given

wi
(k)5W(k)1~v i2s1!] iW

(k). ~40!

Then a simple calculation shows that the solution~35! satis-
fying the boundary conditions~34! has the form

x2v i~l!t52 8
35 wi

(3)~l!1 4
35 l̄wi

(2)1 1
35 l̄2v i~l!1 1

35 l̄3,

i 51,2,3; ~41!

l45l̄5const.
9-4
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These formulas give the solution of our problem in an i
plicit form.

Let us find the laws of motion of the boundaries of t
oscillatory region. Atm51 Eqs. ~41! with i 51 and i 53
give

x2~3l11l̄ !t52l1
3 ,

x2~l112l31l̄ !t52 1
35 ~5l1

316l1
2l318l1l3

2116l3
3!,

and their difference gives the relation

t5 1
35 ~15l1

2112l1l318l3
2!. ~42!

The other two equations of Eq.~41! expanded into series in
powers ofl285l22l3 yield after subtraction another rela
tion

t5 1
35 ~3l1

218l1l3124l3
2!. ~43!

Equating~42! and ~43! to each other, we find at this bound
ary the relation

l352 3
4 l1 , ~44!

which coincides with an analogous relation in the KdV equ
tion case@5,14#. Then from Eqs.~42! or ~43! we obtain at the
left boundaryt5 3

10 l1
2 and hence the left boundary of th

region of oscillations moves according to the law

x2~ t !5~3l11l̄ !t2l1
35l̄t2 1

3A10

3
t3/2. ~45!

Analogous calculation atm50 (l25l1) yields the relations

t5
~8l127l̄ !~8l1

214l1l313l3
2!215l3

3

35~4l12l323l̄ !
, ~46!

21l̄2~4l11l3!210l̄~20l1
212l1l31l3

2!116l1~8l1
2

2l1l32l3
2!19l3

350. ~47!

In the limit ul̄u→`, these equation reproduce the relatio
for the KdV equation case@5,14#, in particular,l152 1

4 l3.
However, in the NLS equation case the solution~41! is not
self-similar and depends on the parameterl̄. An example of
the dependence of the Riemann invariantsl1 ,l2 ,l3 on x at
a fixed value oft is shown in Fig. 2. Substitution of thes
functionsl i(x) into Eq. ~15! gives the dependence of inten
sity on x shown in Fig. 3. This plot illustrates the process
the formation of a shock for the NLS equation case.

IV. ASYMPTOTIC STAGE OF EVOLUTION

In the asymptotic stage of the evolution the pulse dec
into a set of solitons which can be presented as modul
one-phase periodic soliton trains. Each separate solito
described by Eq.~23! and parametersl1 andl4 are constant
along the train, whereas the parameterl2 changes its value
from one soliton to another. Thus, the properties of the tr
03660
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s

f

s
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are determined by the spectrum of valuesl2. It is known
that this spectrum coincides with the eigenvalues of the fi
part of Eq. ~2! for given r0(x) and v0(x) and it does not
change during the evolution ofu(x,t) governed by the NLS
equation. In the case of large and smooth pulses with la
number of eigenvalues, the spectrum can be determined
principle, by means of a semiclassical treatment of the eig
value problem. The corresponding generalization of se
classical quantization rules can be found with the use o
matrix ~Zakharov-Shabat! spectral problem associated wit
the NLS equation~see, e.g., Refs.@12,30–32#!. Here we shall
show that it follows very simply from the scalar form~2!,
and this method of derivation can be generalized on m
other integrable equations~see Refs.@19,25#!.

For strictly periodic case, the solution of the second-or
Eq. ~2! is given by Eq.~6! with constantP(l). For a slowly
modulated wave the zerosl i become slow functions ofx and
t, and for this reason we insertedP(l) under the integration
sign in Eq.~6!. With the use of Eqs.~7!, ~9!, and~13!, we can
presentc6 in the form

c6;expS 6
i

«E
x1

g
$@~l1 i«ux/2u!22uuu2

1«2~uxx/2u2ux
2/2u2!#g21«2~ggxx/22gx

2/4!%1/2dxD ,

~48!

FIG. 2. The dependence of Riemann invariantsl1 ,l2 ,l3 on x

at fixed value of timet51. The fourth Riemann invariantl45l̄
5210 is not depicted. The dashed line shows the correspon
dependence ofl1 for the solution of equations in the dispersionle
limit.

FIG. 3. Dissipationless shock wave for the NLS equation ca

The plot corresponds to the timet51 and l45l̄5210, and«
51.
9-5
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where

g5s1/21 i«ux/2u2l. ~49!

We suppose that this expression holds approximately fo
moments of time including the initial state. Then, since
initial distributions of r0(x)5uu(x,0)u2 and v0(x)5
2 i«ux /u are supposed to be smooth functions ofx, we can
neglect the derivatives ofv0(x) in the weak dispersion limit
«2!1 to obtain the WKB wave function of the initial state

cWKB;expS 6
i

«E
xA@l2 1

2 v0~x!#22r0~x! dxD . ~50!

The eigenvaluesl are determined in this approximation b
the well-known Bohr-Sommerfeld quantization rule@33#

1

« R p~x!dx52p~n1 1
2 !, n50,1,2, . . . ,N,

p~x!5A@l2 1
2 v0~x!#22r0~x!, ~51!

where the integration is taken over the cycle around t
turning points where the integrand function vanishes. Eig
values found in this way are equal to the values of the
rameterl2 in soliton solution~23! when solitons are wel
separated from each other in the asymptotic soliton train

It is instructive to note that the rule~51! corresponds to
the semiclassical quantization of a mechanical system w
the Hamiltonian

H~p,x!5@Ap21r0~x!2 1
2 v0~x!#2, ~52!

wherex is a coordinate andp a momentum. At the turning
points the momentump vanishes. Equation~51! states that
the area inside the contourH(p,x)5const in the phase plan
(x,p) can only take half-integer values in units of 2p«.

The regions of the possible values ofl are determined by
the condition that the expression under the square root in
~51! is positive and has two real turning points. Thus t
plots of the ‘‘potentials’’ ~Riemann invariants in the zer
dispersion limit!

l6~x!5 1
2 v0~x!6Ar0~x! ~53!

permit one to find a qualitative picture of the spectrum.
particular, if the chirp vanishes at infinity,v0(x)→0 at uxu
→`, the greatest absolute value ofl2 is approximately
equal to

ul2umax5Ar~`!5 1
2 ~l12l4!. ~54!

On the other hand, the smallest absolute values oful2u for
large initial pulse must be very close to the absolute lo
minima of the potentialsul6(x)u and at the same time coin
cide with the amplitudes of the deepest solitonsArs @see Eq.
~23!# in the trains produced by this pulse. This gives t
relation

1
4 ~l12l4!22~l12l2!~l22l4!5l2

2,
03660
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which is satisfied by

l25 1
4 ~l11l4! or l11l450.

Here the first solution is nonphysical because for symme
cal pulses we always havel452l1 but ul2umin must vary
depending on the initial data. Thus, we conclude that in
asymptotic trains of solitons the constant parameters sa
the relation

l452l1 , ~55!

and hence the possible values ofl2 are located inside the
intervals

2lmax,l2,lmin8 , lmin9 ,l2,lmax, ~56!

wherelmax5Ar(`) andl8,l9 (l8,l9) correspond to the
minima of the potentialsul6(x)u. Solitons in the arising
trains have the intensity given by

rs~x,t !5l1
22

l1
22l2

2

cosh2@Al1
22l2

2~x22l2t !/«#
. ~57!

Since the velocity of solitons~57! is equal to the values o
2l2 and at this asymptotic stage of the evolution we c
neglect the ‘‘initial positions’’ of solitons, then the coordina
of the nth soliton at the momentt is given by

x52l2
(n)t, ~58!

where l2
(n) is the nth eigenvalue determined by Eq.~51!.

Hence, at the momentt the soliton trains occupy the interva

22lmaxt,x,2lmin8 t and 2lmin9 t,x,2lmaxt.
~59!

Differentiation of Eq.~51! with respect tol yields the
number of eigenvalues in the interval (l,l1dl),

dn5 f ~l!dl5S 1

2p« R l2v0~x!/2

A@l2v0~x!/2#22r0~x!
dxD dl.

~60!

This formula has a simple interpretation in terms of sem
classical quantization rules for the Hamiltonian~52!.
Namely, the ‘‘velocity of motion’’ between two turning
points is given by

ẋ5
]H

]p
5

2lA~l2v0~x!/2!22r0~x!

l2v0~x!/2
,

and the calculation of the period of this oscillatory motio
T5rdx/ ẋ and of the corresponding frequencyv52p/T
shows that Eq.~60! can be written in the form

dl2

dn
5«v~l!52p«S R dx

ẋ
D 21

, ~61!
9-6
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which means that the distance between neighboring eig
values ofl2 is equal to the ‘‘quantum’’«v proportional to
the frequencyv of the classical motion. The rule~61! coin-
cides with the quantum mechanical rule of semiclass
quantization with the Planck constant\ replaced by« @33#.

The number of solitons in the interval (x,x1dx) is given
by

dn5~1/2t ! f ~x/2t !dx, ~62!

where f (l) is determined by Eq.~60!. The amplitudes of
these dark solitons are equal tol1

22(l2
(n))2, and positive

eigenvaluesl2
(n).0 correspond to solitons moving to th

right and negative eigenvaluesl2
(n),0 to solitons moving to

the left. Thus, the formulas obtained give the complete
scriptions of the soliton trains arising from an initially larg
and smooth pulse.

Let us illustrate this theory by concrete examples a
compare the theoretical predictions with the results of
direct numerical solution of the defocusing NLS equati
~1!.

At first we choose the initial distribution of intensit
r0(x) in the form

r0~x!5S 22
1

coshxD 2

~63!

and the initial distribution ofv0(x) as

either v0~x!50 ~64a!

FIG. 4. Plots of initial potentialsl6 @see Eq.~53!# as functions
of x for r0(x) andv0(x) given by Eqs.~63! and ~64!, ~a! and ~b!,
respectively. The turning pointsx6 corresponding to the eigenvalu
l51.2 are shown. The possible values ofl are given by Eq.~65!.
03660
n-

l

-

d
e

or

v0~x!524sinhx/cosh2x. ~64b!

The parameter« controlling the dispersion effects is chose
equal to«50.2. In Fig. 4 the plots of potentials~53! are
shown for zero~a! and nonzero~b! initial velocities v0(x).
The possible values ofl are located inside the intervals~56!
and they must satisfy the quantization rule~51! that selects
contours H(p,x)5const5l2 in the phase plane (x,p).
These contours corresponding to the even values ofn and
l.0 are depicted in Fig. 5 for zero~a! and nonzero~b!
initial chirp. The dependence ofn on l.0 is shown in Fig.
6, where the lower curve corresponds to zero chirp and

FIG. 5. ContoursH(p,x)5const5l2 in the phase plane (x,p)
of the mechanical system described by Hamiltonian~52! with r0(x)
and v0(x) given by Eqs.~63! and ~64a,b! and for values ofl
determined by the quantization rule~51! with evenn.

FIG. 6. The dependence ofn on l.0 defined by Eq.~51! for
r0(x) and v0(x) given by Eqs.~63! and ~64!. The lower curve
corresponds to zero chirp~a! and the upper curve to nonzero chir
~b!.
9-7
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upper curve to nonzero chirp. As we see, the chosen c
diminishes the values of the eigenvaluesl2

(n) , so that soli-
tons arising in this case move slower than in the case of z
chirp.

We have solved the NLS equation~1! with the initial con-
ditions ~63! and ~64! numerically and the results are show
in Fig. 7 again for zero~a! and nonzero~b! chirp. As one can
see, the results are in excellent agreement with the predi
intervals. To make a comparison of the theory with nume
cal results clearer, we have calculated velocities of solit
in the trains and, according to Eq.~58!, have taken halves o

FIG. 7. Soliton trains obtained by numerical solution of the N
equation~1! with «50.2 and initial conditions~63! and ~64! with
zero ~a! and nonzero~b! initial chirp. Asymptotic distributions of
intensity are shown as functions of space coordinatex at the mo-
ment t525.

FIG. 8. The potentialsl6(x) @see Eq.~53!# for the initial con-
ditions ~63! and ~65!.
03660
rp

ro

ed
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these velocities as values ofl2 calculated numerically. We
give in Table I the values ofl2[lBS calculated from the
Bohr-Sommerfeld quantization rule~51! and of l2

[lsimulation calculated from velocities of the soliton train
The agreement between the two methods of calculatio
quite good. The difference does not exceed 3% and is m
mal at very smalln, where the accuracy of the semiclassic
calculation of the eigenvalues cannot, generally speaking
extremely high, and at largen, where the numerical estimat
has poor accuracy because solitons here are not sepa
well enough from each other and their motion does not o
the formula~58! yet. The accuracy of asymptotic formula
increases with the decrease of«. The number of solitons
formed from a pulse with a given intensity is proportion
to «.

FIG. 9. Soliton trains obtained by numerical solution of the NL
equation~1! with «50.2 and initial conditions~63! and ~65!. The
asymptotic distribution of intensity is shown as a function of spa
coordinatex at the momentt520. The train of usual solitons move
to the left and corresponds to negative eigenvalues in the pote
l2(x) and the train of twin solitons moves to the right and cor
sponds to positive slightly split eigenvalues in two-well potent
l1(x).

TABLE I. Eigenvalues for the initial conditions~63! and ~64!.

n v50
v52

4sinhx

cosh2x

lBS lsimulation lBS lsimulation

0 1.094 1.078 0.390 0.402
1 1.254 1.243 0.653 0.669
2 1.387 1.379 0.878 0.885
3 1.499 1.494 1.072 1.096
4 1.594 1.592 1.242 1.270
5 1.674 1.676 1.391 1.425
6 1.743 1.749 1.521 1.562
7 1.802 1.812 1.634 1.684
8 1.852 1.866 1.732 1.793
9 1.892 1.913 1.814 1.890
10 1.926 1.954 1.882 1.978
11 1.953 1.989 1.936 2.054
9-8
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As a second example we shall consider the initial pu
with intensity ~63! and more complicated chirp

v0~x!5
d

dx S 2sinhx

cosh2x
D 5

32cosh~2x!

cosh3x
~65!

when the potentials~53! have the form shown in Fig. 8. Th
potentiall2(x) has usual one-well form with nondegenera
negative eigenvalues which can be calculated accordin
the semiclassical rule~51!. However, the semiclassical eige
values of the two-well potentiall1(x) are double degenerat
and by analogy with quantum mechanics they must be s
into two very close levels with splitting proportional to th
barrier penetration coefficient@33#,

Dl2
(n)}expS 2

1

«E2x1

x1 Up~x!UdxD , ~66!

so that the eigenvalues are given by

l2
(n)65l2

(n)6 1
2 Dl2

(n) , ~67!

wherel2
(n) correspond to the rule~51! and the integral in Eq.

~66! is calculated atl5l2
(n) . These close to each other e

genvalues must lead to the formation of ‘‘twin’’ solitons wit
very close values of their parameters. The intensity of
pulse obtained by the numerical solution of the NLS eq
tion ~1! with initial data ~63! and ~65! is shown in Fig. 9.
Solitons moving to the left correspond to the nondegene
eigenvalues and their velocities 2l2

(n) agree quite well with
ones calculated according to Eq.~51!; see Table II. Twin

TABLE II. Negative eigenvalues for the initial conditions~63!
and ~65!.

n lBS lsimulation

0 20.2278 20.2280
1 20.6073 20.6052
2 20.9175 20.9155
3 21.1775 21.1774
4 21.39684 21.3998
5 21.58083 21.5875
6 21.73217 21.7432
7 21.85163 21.8695
8 21.93821 21.9647
9 21.98889
tt.
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solitons moving to the right correspond to slightly split e
genvalues of the spectral problem with two-well potent
l1(x) and the mean velocity of each couple agrees w
enough with the semiclassical rule~51!; see Table III.

V. CONCLUSION

The semiclassical approach developed in this paper
mitted us to consider in some detail the evolution of puls
governed by the defocusing NLS equation. Two characte
tic stages of evolution have been considered—the forma
of the dissipationless shock after the wave breaking po
and asymptotic soliton trains formed eventually from a lar
initial pulse. It has been shown that the semiclassical
proach to the calculation of the eigenvalues of the probl
~2! yields a simple and effective description of th
asymptotic stage of the evolution of an initially large a
smooth pulse in the weak dispersion limit. The results sh
that the arising solitons can be slowed down by the ini
chirp, but it cannot prevent the formation of solitons from
large pulse due to dispersion effects. As typical examples,
usual soliton trains and twin soliton trains are consider
Their characteristic features are controlled by the initial co
ditions, what may occur useful for applications. The theor
ical predictions are confirmed by numerical simulations.
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TABLE III. Positive eigenvalues for the initial conditions~63!
and ~65!; lsimulation are calculated as arithmetic mean values
each couple of twin solitons.

n lBS lsimulation

0 1.329 1.311
1 1.498 1.489
2 1.637 1.635
3 1.749 1.757
4 1.838 1.857
5 1.907 1.941
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